

MICRO-428: Metrology

Week Two: Elements of Statistics

Samuele Bisi

Alexander Domenech

Claudio Bruschini

Advanced Quantum Architectures Laboratory (AQUA)

EPFL at Microcity, Neuchâtel, Switzerland

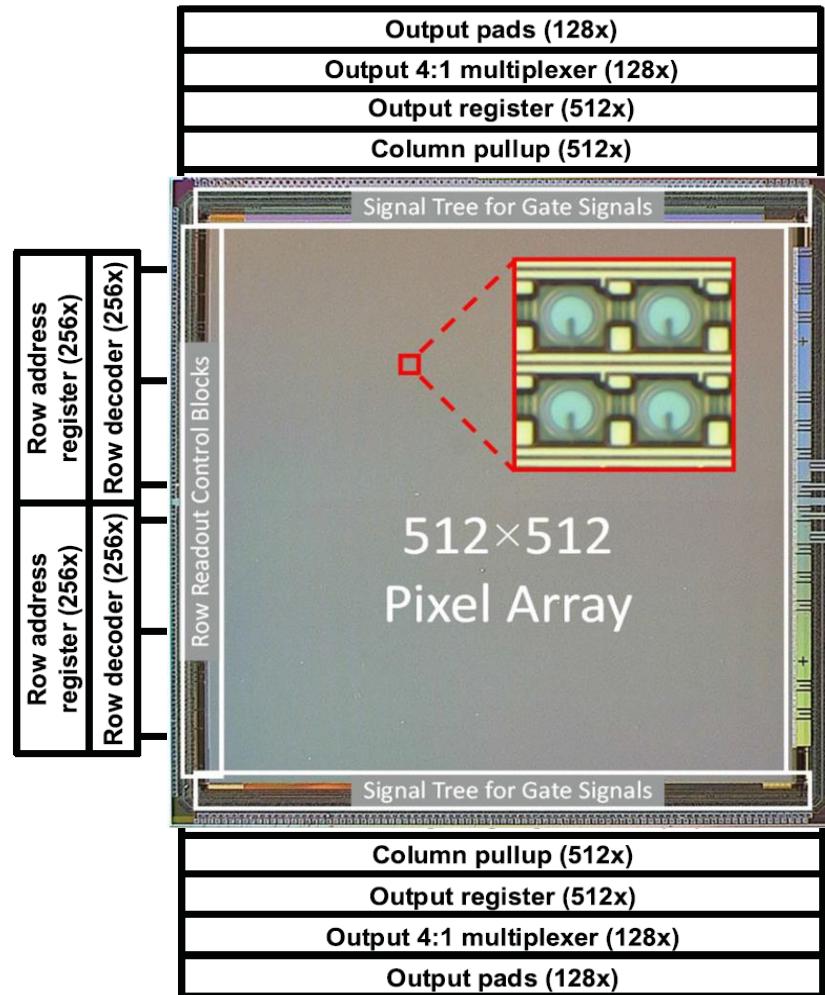
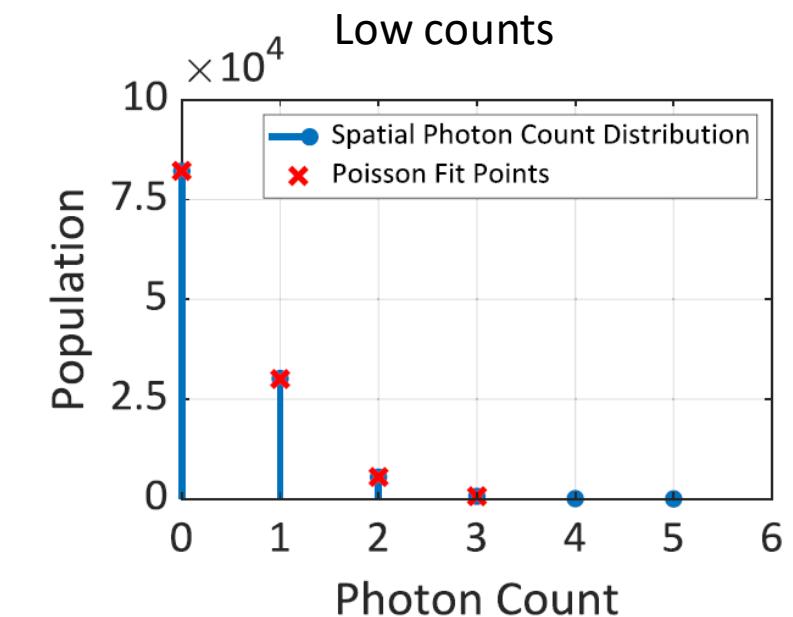
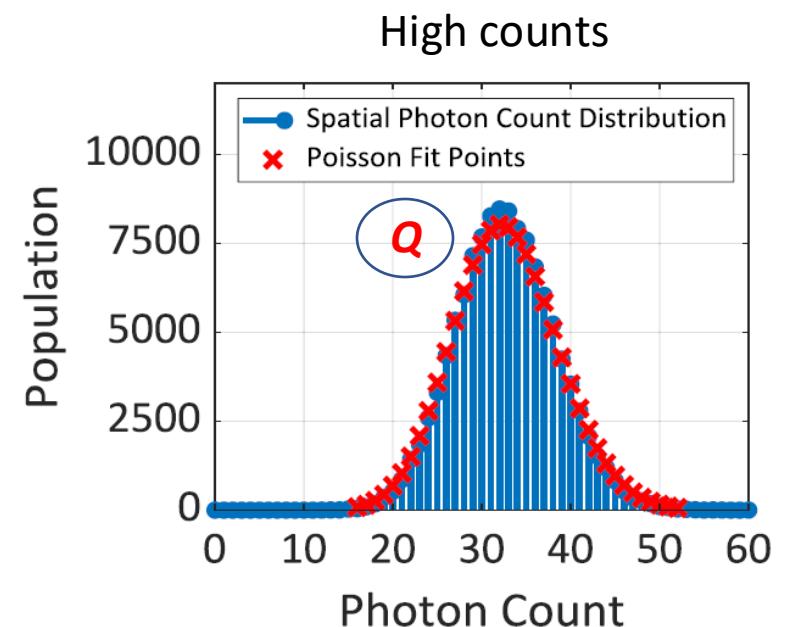
EPFL

Exercise 1: Group explanation

1. Divide yourself in small group (2-3 ppl).
2. Discuss the following example taken from the lecture, focusing on understanding what is happening.

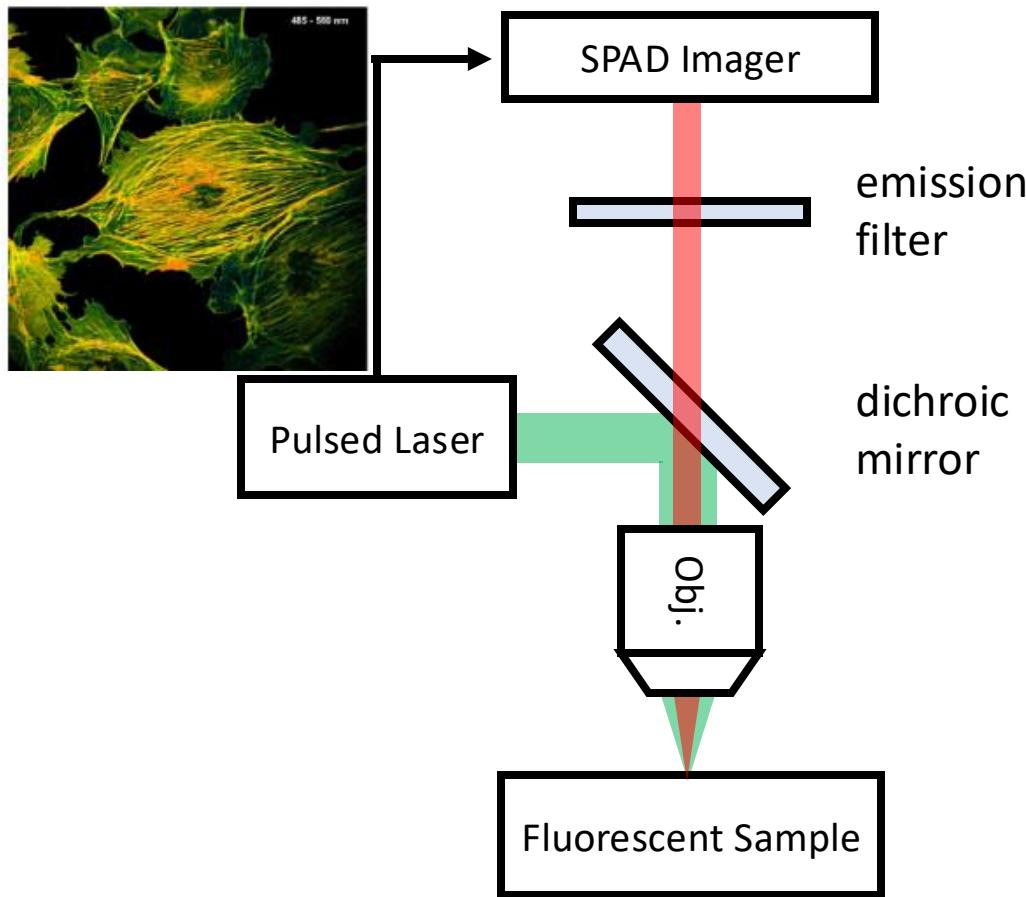
8.2.9 Example 1: Photon-flux dependent distributions

SwissSPAD2
binary SPAD
imager
(intensity)

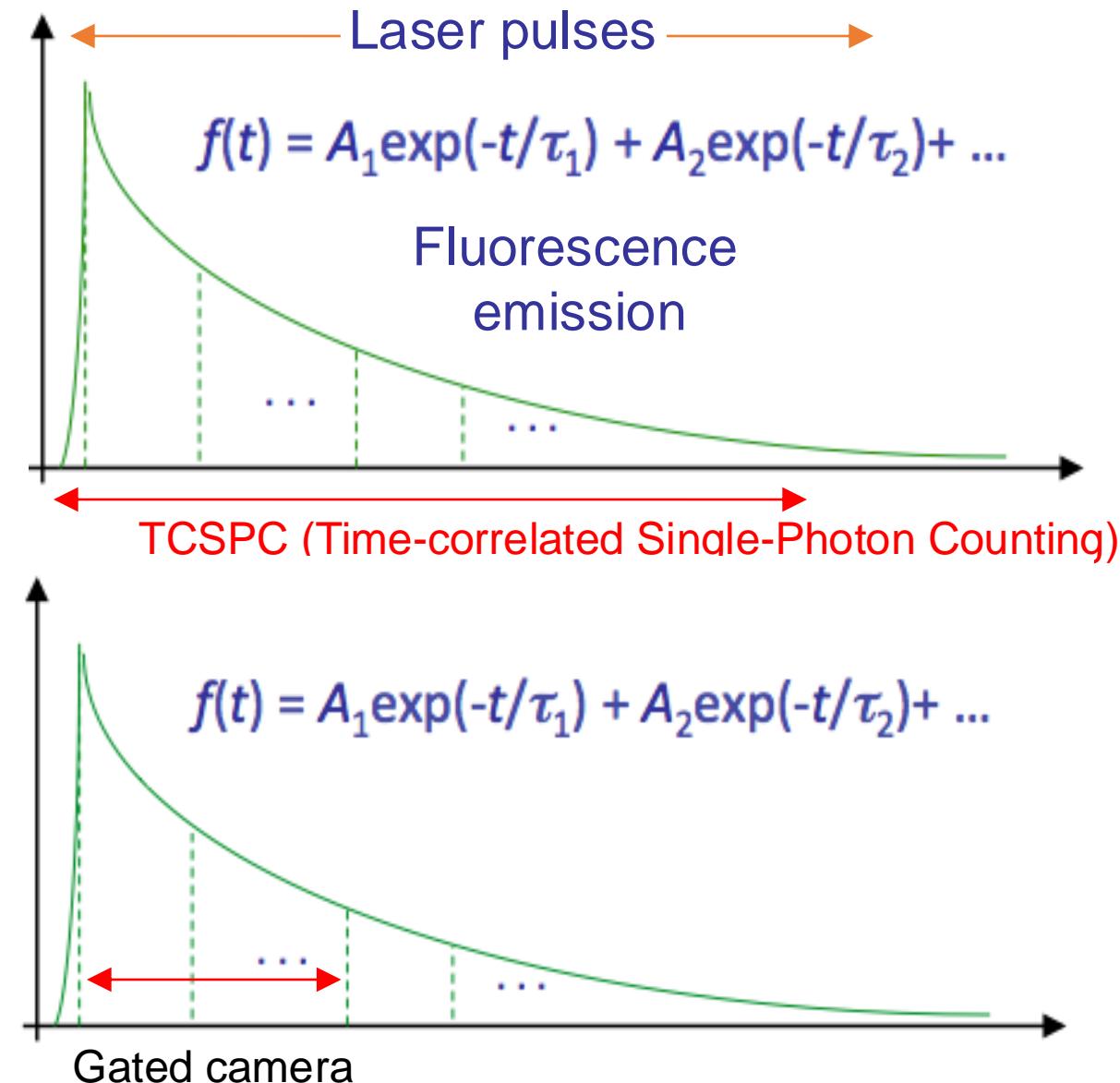


A. Ulku *et al.*, A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).

8.2.9 Example 2: Fluorescence Lifetime – Time-Resolved

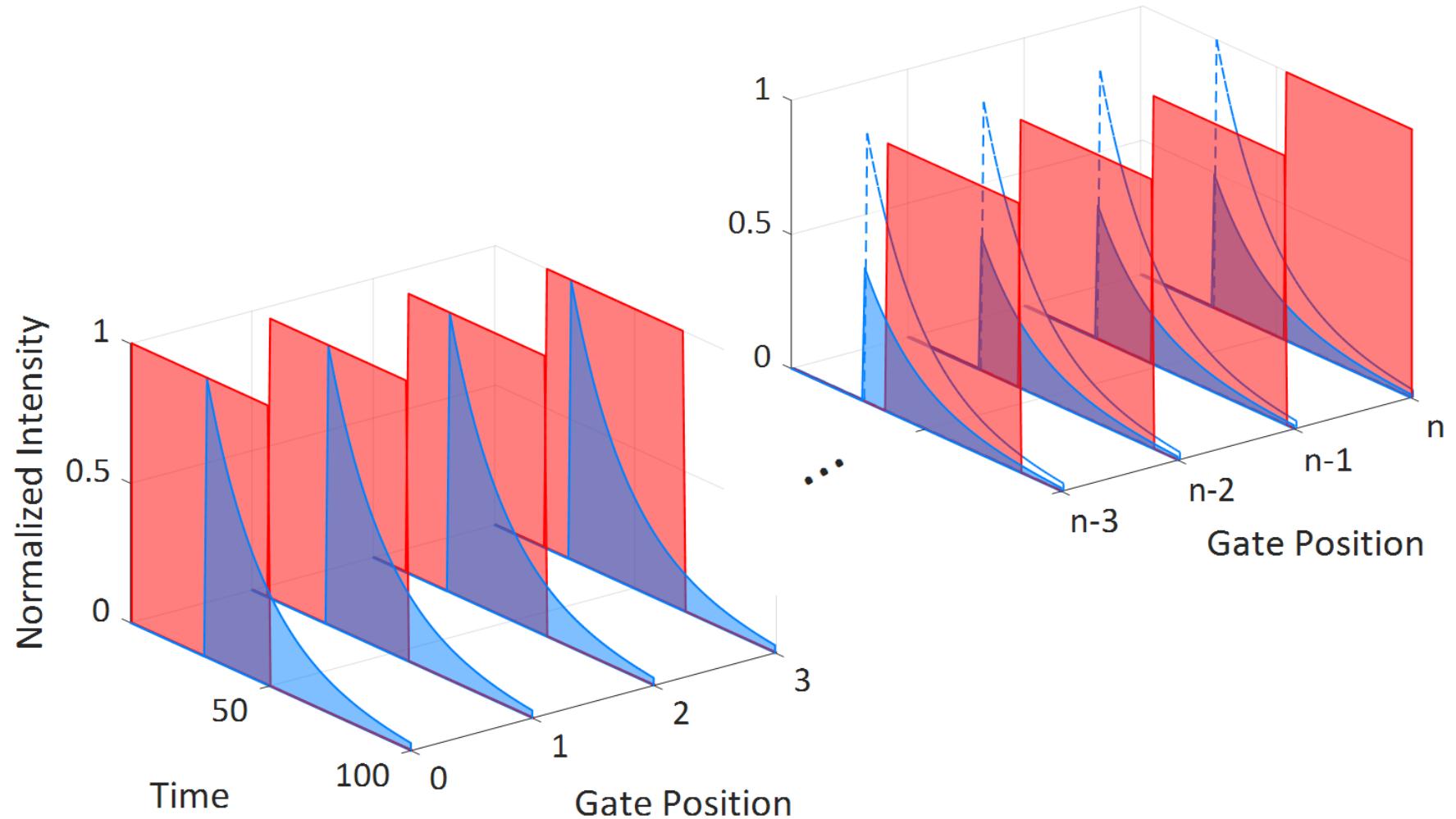


Lifetime images: the pixel **time-tags all photons** and calculates t_1, t_2, A_1



8.2.9 Example 2: Fluorescence Lifetime – Time-Resolved

SwissSPAD2
binary SPAD
imager
(overlapping gates)



A. Ulku *et al.*, Large-Format Time-Gated SPAD Cameras for Real-Time Phasor-Based FLIM. EPFL Thèse 8311 (2021).

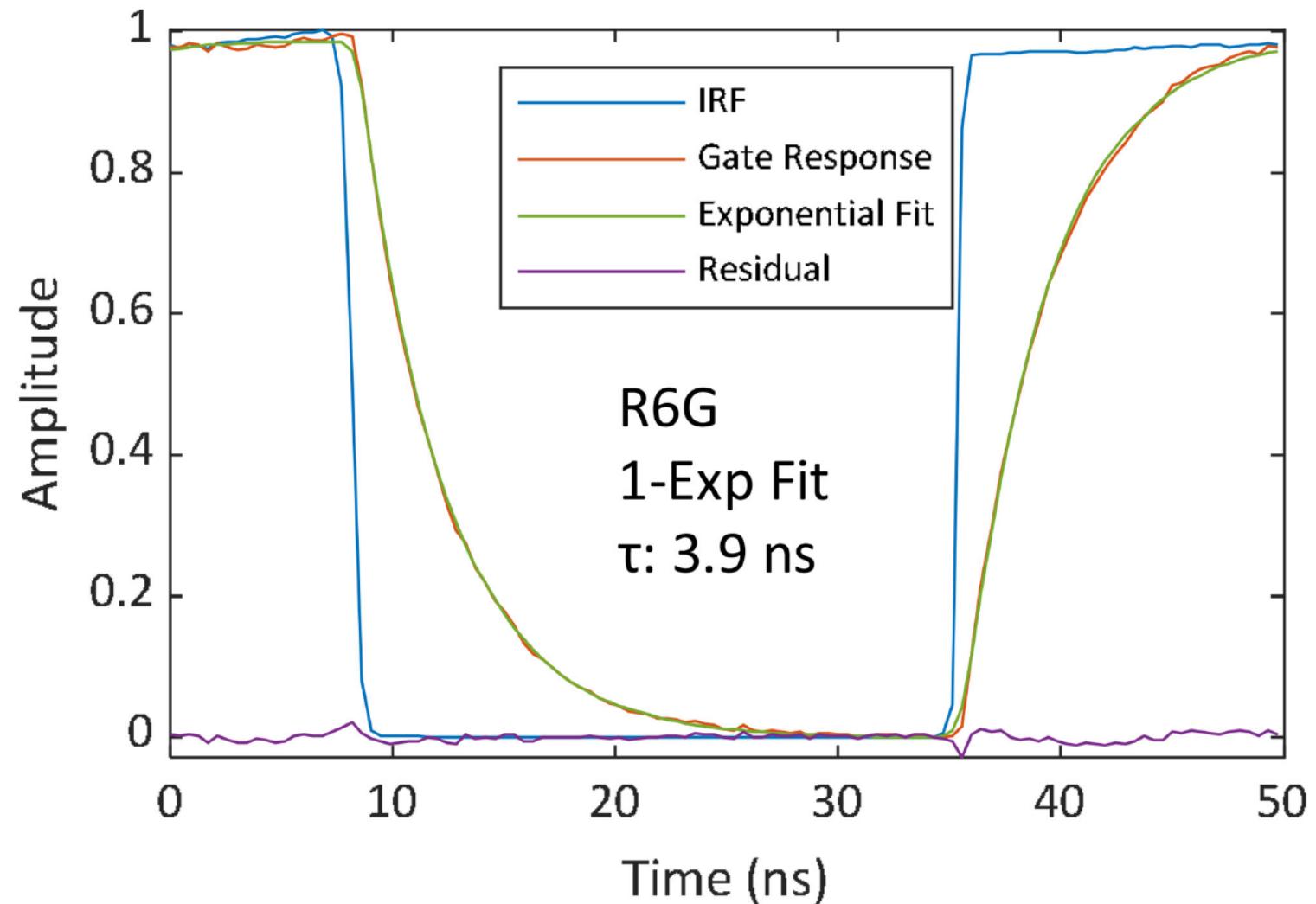
8.2.9 Example 2: Fluorescence Lifetime – Time-Resolved

SwissSPAD2
binary SPAD
imager

(overlapping gates
→ convolution)

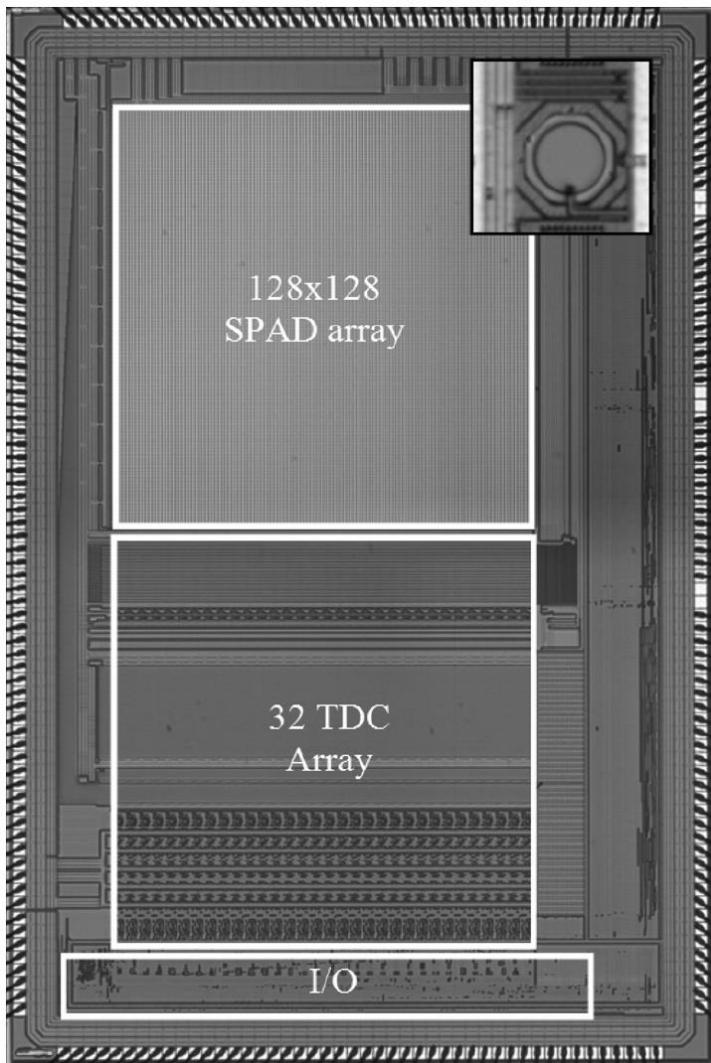
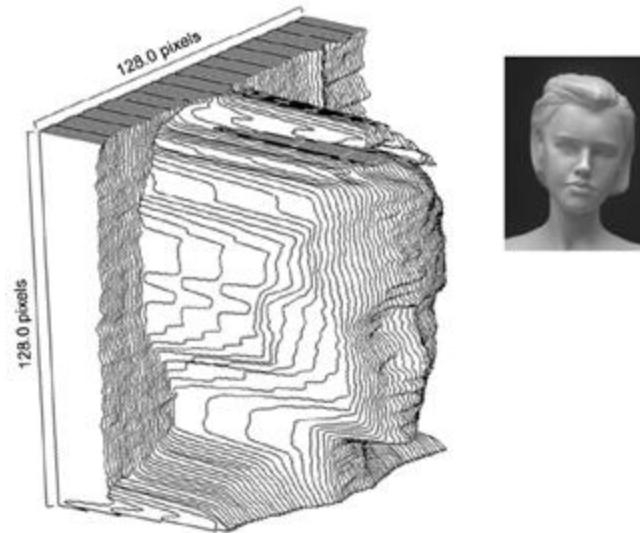
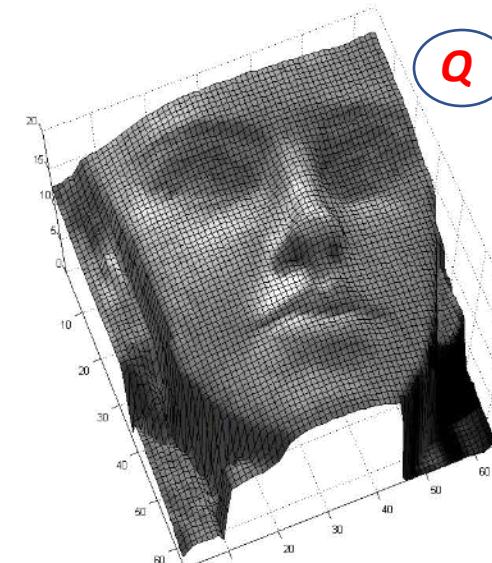
$$f(t) = g(t) * \text{IRF}(t)$$

IRF: Instrument
Response Function



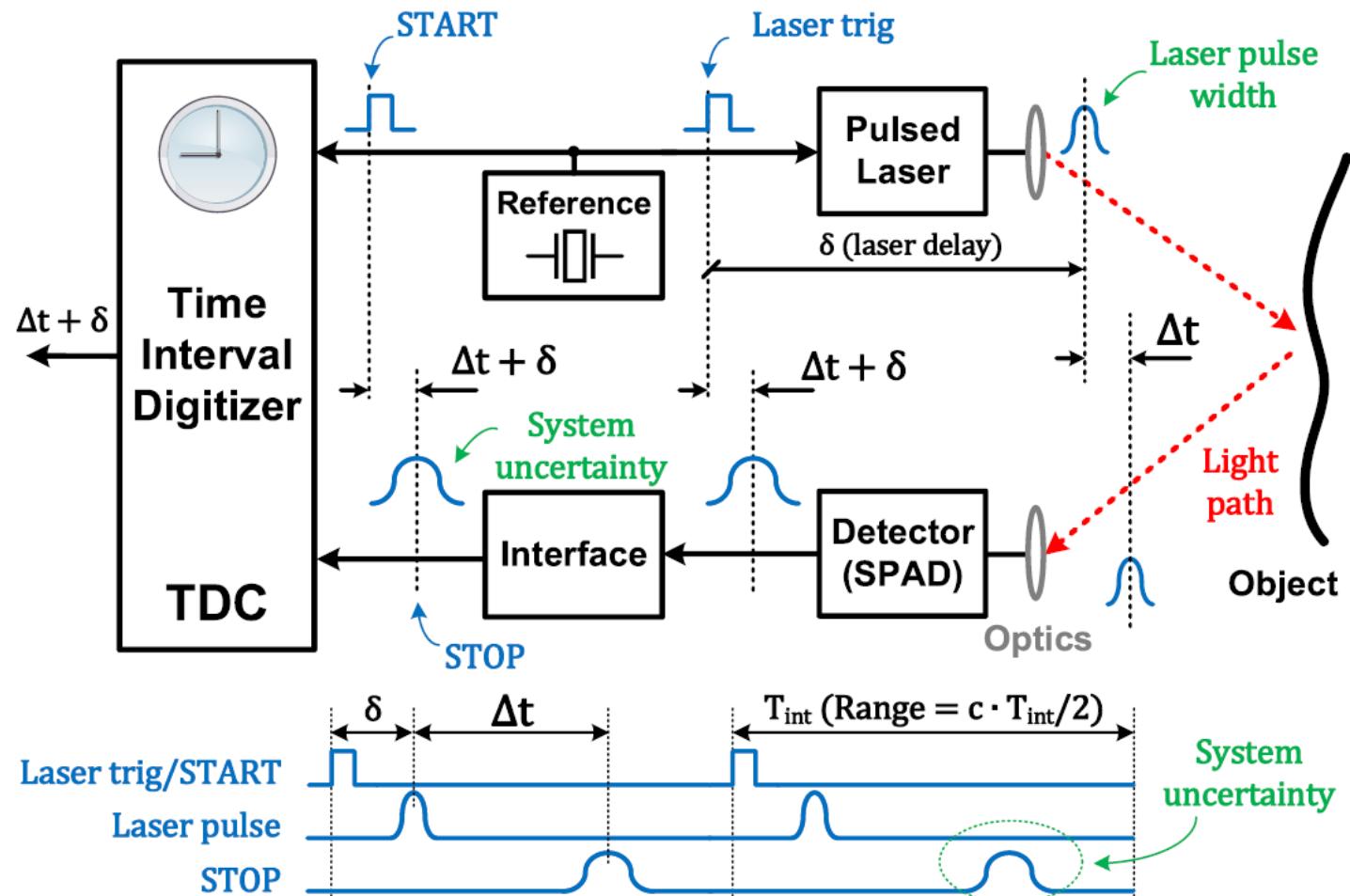
 A. Ulku *et al.*, A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).

8.2.9 Example 3: Real Life Truths – LIDAR & Timing Jitter in SPADs

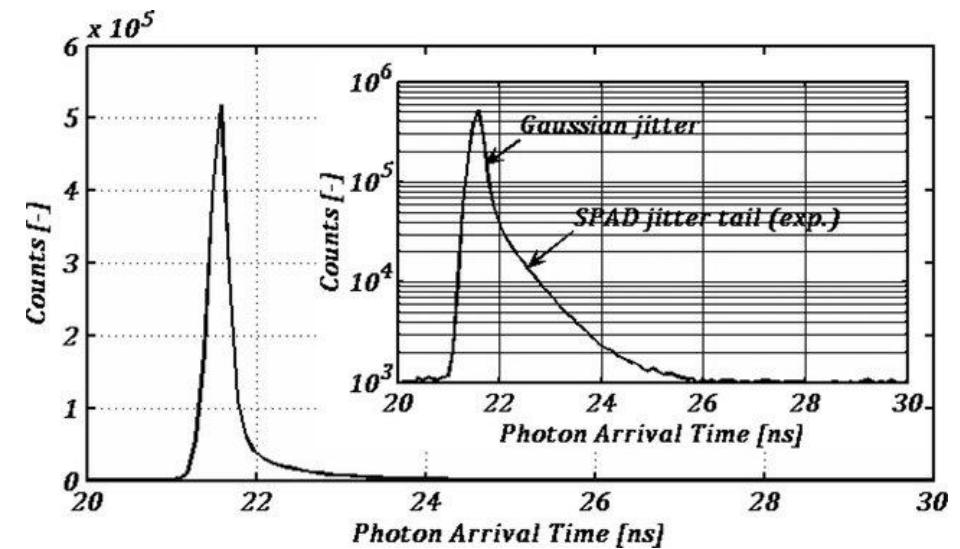


C. Niclass *et al.*, A 128×128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array. IEEE JSSC 43 (2008).

8.2.9 Example 3: Real Life Truths – LIDAR & Timing Jitter in SPADs



Direct SPAD illumination ->
SPAD IRF (jitter noise) ->
Non-Gaussian behavior of
the SPADs timing
uncertainty

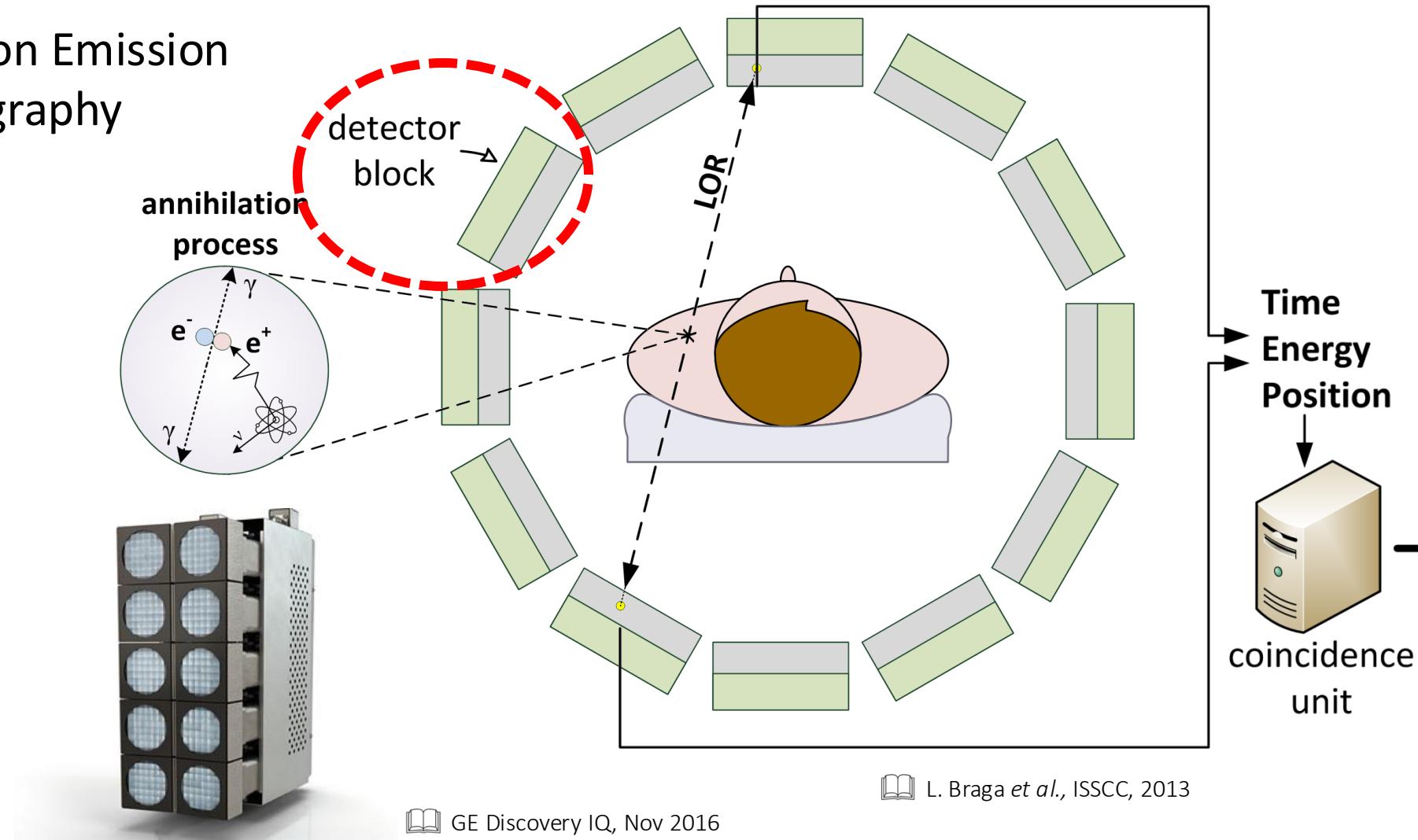


A. R. Ximenes et al., A Modular, Direct Time-of-Flight Depth Sensor in 45/65-nm 3-D-Stacked CMOS Technology. IEEE JSSC 54 (2019).

C. Niclass et al., A 128x128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array. IEEE JSSC 43 (2008).

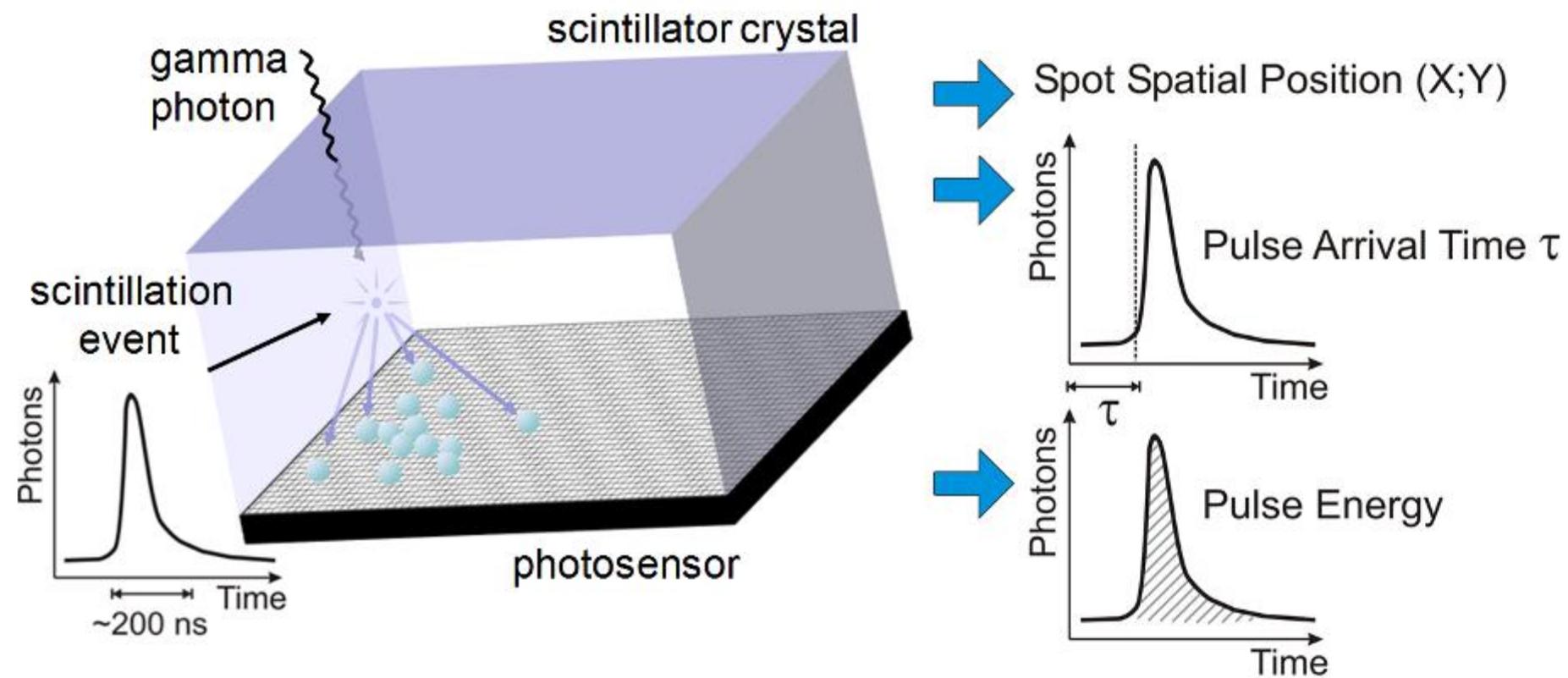
8.2.9 Example 4: Real Life Truths – Scintillation Light

Positron Emission Tomography Basics

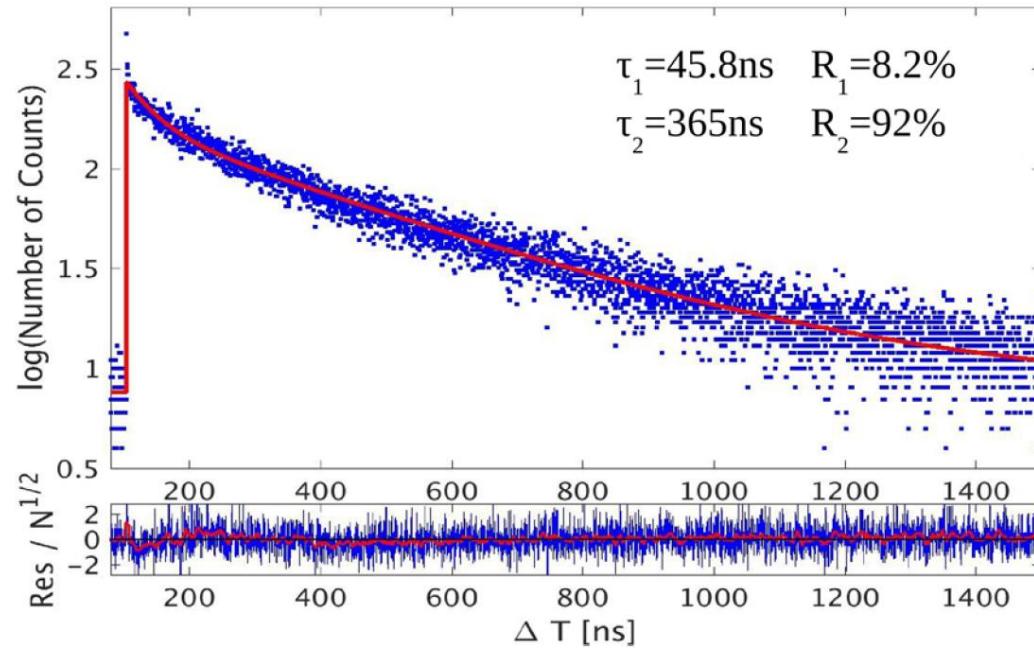
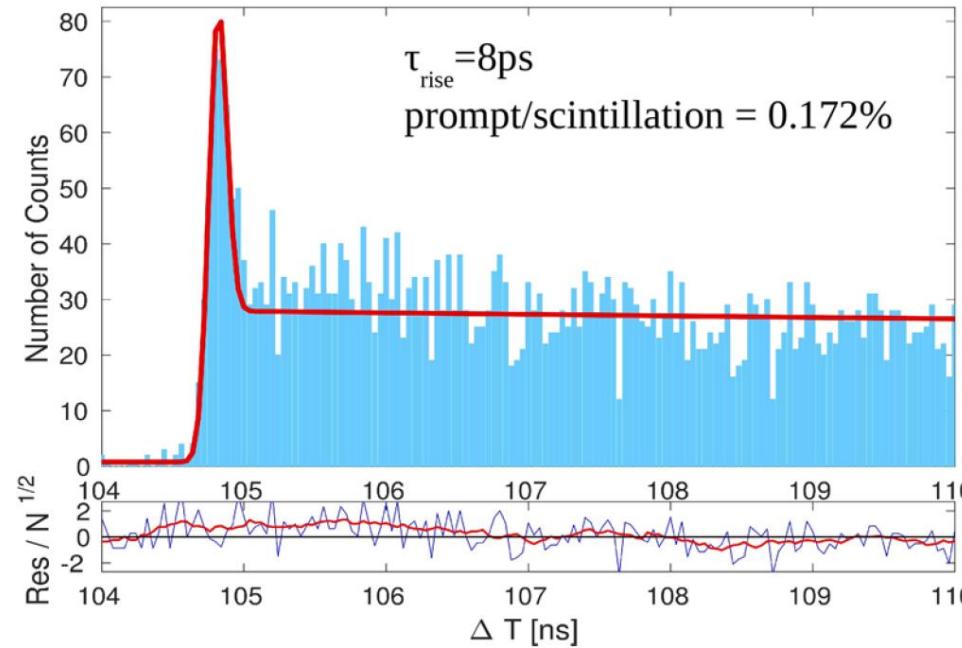


G. Nemeth, Mediso, Delft WS 2010

8.2.9 Example 4: Real Life Truths – Scintillation Light



8.2.9 Example 4: Real Life Truths – Scintillation Light



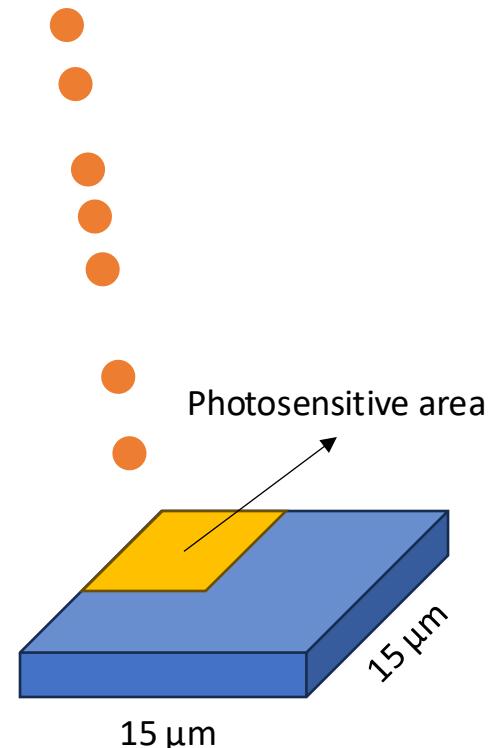
Fast vs.
“slow”
scintillation
photons in a
heavy
scintillating
crystal

Figure 10. Scintillation decay and rise time of BGO measured with a time correlated single photon counting (TCSPC) setup using 511 keV annihilation gammas (Gundacker *et al* 2016b). The figure on the right hand side shows a pronounced Cherenkov peak at the onset of the scintillation emission with a relative abundance of 0.172% compared to the total amount of photons detected by the stop detector of the TCSPC setup.

Gundacker S, Auffray E, Pauwels K and Lecoq P *Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET*. IOP Phys. Med. 61 2802–37

Exercise 2: Missed Photon Count

- A **single photon detector** (active area of $15 \times 15 \mu\text{m}^2$, fill factor of 20%) is illuminated with a continuous wave red laser (633 nm) with a uniform **surface power density** of $2 \mu\text{W}/\text{cm}^2$.
- The detector has an average **photon detection probability** (PDP) at 633 nm of 35%.
- If the **dead time** of the detector (t_D , time for the detector to recover operation after clicking) is of 2 ns, what is the probability that photons are missed during detector's dead time?

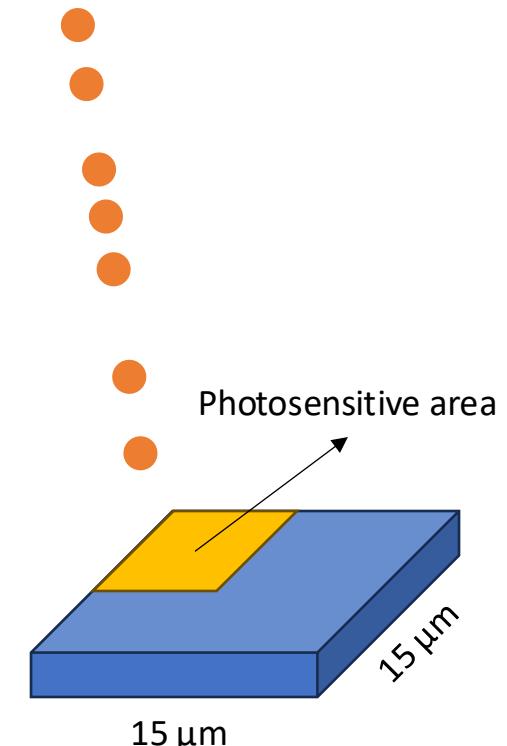


Single Photon Energy:
$$E_{ph} = h\nu = h\frac{c}{\lambda}$$

Exercise 2: Missed Photon Count

- A **single photon detector** (active area of $15 \times 15 \mu\text{m}^2$, fill factor of 20%) is illuminated with a continuous wave red laser (633 nm) with a uniform **surface power density** of $2 \mu\text{W}/\text{cm}^2$.
- The detector has an average **photon detection probability** (PDP) at 633 nm of 35%.
- If the **dead time** of the detector (t_D , time for the detector to recover operation after clicking) is of 2 ns, what is the probability that photons are missed during detector's dead time?
- First of all, we calculate the average number of photons striking the detector. In order to do that, we need to know the **energy of a single photon** and the **mean optical power** in the area of interest:

$$\begin{aligned}\text{Single Photon Energy: } E_{ph} &= h\nu = h\frac{c}{\lambda} = \\ &= 6.62607015 \cdot 10^{-34} \text{ J} \cdot \text{s} \times \frac{299792458 \text{ m} \cdot \text{s}^{-1}}{633 \cdot 10^{-9} \text{ m}} = 3.138145 \cdot 10^{-19} \text{ J}\end{aligned}$$



$$\text{Single Photon Energy: } E_{ph} = h\nu = h\frac{c}{\lambda}$$

Exercise 2: Missed Photon Count

Average Optical Power on Active Area: $\pi = P_T FF A_{active} =$

$$= 2 \cdot 10^{-6} \cdot 10^4 \frac{W}{m^2} \times 0.2 \times 225 \cdot 10^{-12} m^2 = 0.9 \cdot 10^{-12} W$$

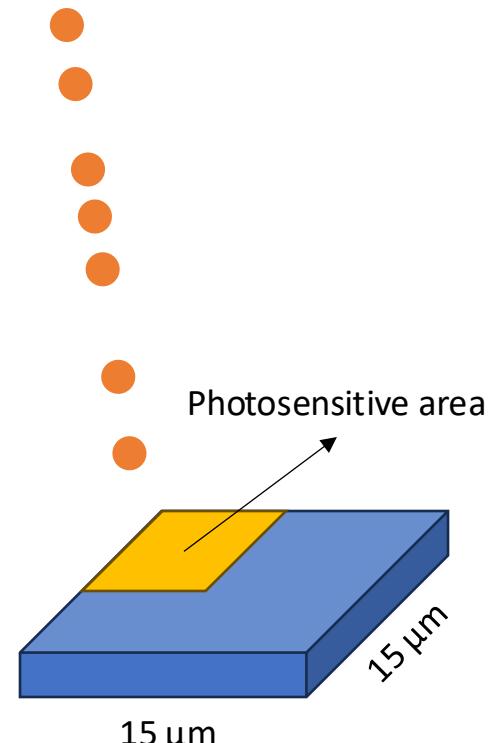
- Now we can calculate the [average number of photons](#) seen by the detector:

Average Photon Number on Active Area:

$$\mu_{ph} = \frac{\pi}{E_{ph}} PDP =$$

$$= \frac{0.9 \cdot 10^{-12} W}{3.14 \cdot 10^{-19} J} \times 0.35 = 1.003 \cdot 10^6 \text{ cps}$$

- Since we have the mean values of a time dependent random variable (time before a photon is detected by the sensor) our distribution will be an [Exponential distribution](#). The probability for a photon to be detected is given by $X \sim \text{Expo}(\mu_{ph})$.



Single Photon Energy:
 $E_{ph} = h\nu = h\frac{c}{\lambda}$

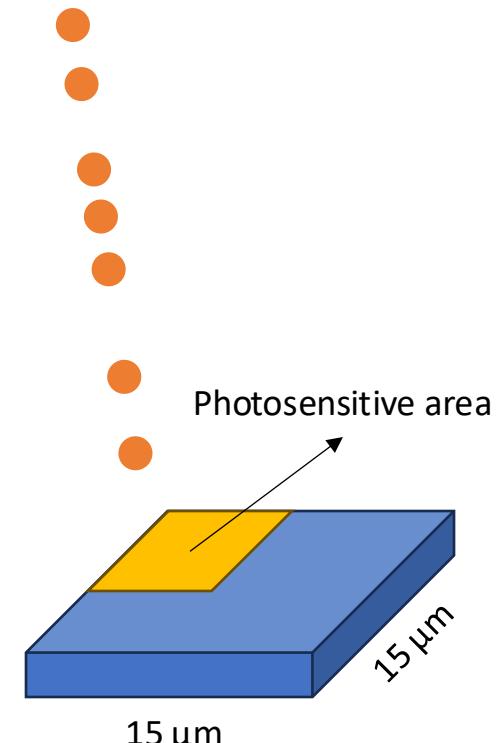
Exercise 2: Missed Photon Count

- Assuming that the first photon is absorbed at a certain time t_X , it follows that the probability that a photon is absorbed before $t_X + t_D$ is:

$$P\{X \leq t_D\} = 1 - e^{-(\mu_{ph} t_D)}$$

- However, we could have used another approach, and exploit the properties of the [Poisson distribution](#) $Y \sim \text{Pois}(\lambda_{ph})$. In fact, since the average number of photons in the time t_D is given by $\mu_{ph} t_D = \lambda_{ph}$, the probability to detect at least one photon would be:

$$P\{Y > 0\} = 1 - P\{Y \leq 0\} = 1 - \sum_{y=0}^0 \frac{(\lambda_{ph})^y}{y!} e^{-(\lambda_{ph})} = 1 - e^{-(\lambda_{ph})}$$



Single Photon Energy:
 $E_{ph} = h\nu = h\frac{c}{\lambda}$

Exercise 3: Moment Generating Function

- Obtain the moment generating function of the [normal](#) distribution $X \sim \mathcal{N}(\mu, \sigma^2)$. Calculate the first three moments.

- The [moment generating function](#) (MGF) of a RV X is defined as:

$$\text{MGF: } \phi(t) = E\{e^{tX}\} = \begin{cases} \sum_x e^{tx} p_X(x), & \text{if } X \text{ is discrete *} \\ \int_{-\infty}^{\infty} e^{tx} f_X(x) dx, & \text{if } X \text{ is continuous *} \end{cases}$$

Exercise 3: Moment Generating Function

- Obtain the moment generating function of the [normal](#) distribution $X \sim \mathcal{N}(\mu, \sigma^2)$. Calculate the first three moments.
- First of all, let's find the moment generating function of the standard normal, i.e. for $Z \sim \mathcal{N}(0,1)$. It follows:

$$\begin{aligned} E\{e^{tZ}\} &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tz} e^{-z^2/2} dz \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(z^2-2tz)/2} dz \\ &= e^{t^2/2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(z-t)^2/2} dz \\ &= e^{t^2/2} \end{aligned}$$

- The [moment generating function](#) (MGF) of a RV X is defined as:

$$\text{MGF: } \phi(t) = E\{e^{tX}\} = \begin{cases} \sum_x e^{tx} p_X(x), & \text{if } X \text{ is discrete *} \\ \int_{-\infty}^{\infty} e^{tx} f_X(x) dx, & \text{if } X \text{ is continuous *} \end{cases}$$

Exercise 3: Moment Generating Function

- For the [normal distribution](#), it follows that $X \sim \mathcal{N}(\mu, \sigma^2) = \sigma Z + \mu$.
Therefore:

$$\begin{aligned}\phi(t) &= E\{e^{tX}\} = E\{e^{t(\sigma Z + \mu)}\} = \\ &= e^{t\mu} E\{e^{t\sigma Z}\} = \exp\left\{\frac{\sigma^2 t^2}{2} + \mu t\right\}\end{aligned}$$

- By differentiating we get:

$$\phi'(t) = (\mu + t\sigma^2) \exp\left\{\frac{\sigma^2 t^2}{2} + \mu t\right\}$$

$$\phi''(t) = (\mu + t\sigma^2)^2 \exp\left\{\frac{\sigma^2 t^2}{2} + \mu t\right\} + \sigma^2 \exp\left\{\frac{\sigma^2 t^2}{2} + \mu t\right\}$$

- The [moment generating function](#) (MGF) of a RV X is defined as:

$$\text{MGF: } \phi(t) = E\{e^{tX}\} = \begin{cases} \sum_x e^{tx} p_X(x), & \text{if } X \text{ is discrete *} \\ \int_{-\infty}^{\infty} e^{tx} f_X(x) dx, & \text{if } X \text{ is continuous *} \end{cases}$$

Exercise 3: Moment Generating Function

$$\begin{aligned}\phi'''(t) &= (\mu + t\sigma^2)^3 \exp\left\{\frac{\sigma^2 t^2}{2} + \mu t\right\} + 2\sigma^2(\mu + t\sigma^2) \exp\left\{\frac{\sigma^2 t^2}{2} + \mu t\right\} + \\ &\quad + \sigma^2(\mu + t\sigma^2) \exp\left\{\frac{\sigma^2 t^2}{2} + \mu t\right\}\end{aligned}$$

- Hence it follows:

$$\phi'(0) = \mu = E\{X\}$$

$$\phi''(0) = \mu^2 + \sigma^2 = E\{X^2\}$$

$$\phi'''(0) = \mu^3 + 3\mu\sigma^2 = E\{X^3\}$$

- The moment generating function (MGF) of a RV X is defined as:

$$\text{MGF: } \phi(t) = E\{e^{tX}\} = \begin{cases} \sum_x e^{tx} p_X(x), & \text{if } X \text{ is discrete *} \\ \int_{-\infty}^{\infty} e^{tx} f_X(x) dx, & \text{if } X \text{ is continuous *} \end{cases}$$

Exercise 3: Moment Generating Function

- METHOD 2: Alternatively, we can simplify the computation by means of a Taylor-McLaurin power series expansion of the exponentials:

$$\begin{aligned}\phi(t) &= \exp\left\{\frac{\sigma^2 t^2}{2} + \mu t\right\} = \exp\left\{\frac{\sigma^2 t^2}{2}\right\} \exp\{\mu t\} = \\ &= \left(1 + \frac{\sigma^2 t^2}{2} + O(t^4)\right) \left(1 + \mu t + \frac{\mu^2 t^2}{2} + \frac{\mu^3 t^3}{6} + O(t^4)\right) \\ &= 1 + \mu t + \frac{\mu^2 + \sigma^2}{2} t^2 + \left(\frac{\mu^3}{6} + \frac{\mu \sigma^2}{2}\right) t^3 + O(t^4) \\ &= 1 + \mu t + (\mu^2 + \sigma^2) \frac{t^2}{2} + (\mu^3 + 3\mu\sigma^2) \frac{t^3}{6} + O(t^4)\end{aligned}$$

$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$
 $e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \dots$

which leads in an elegant and simplified way to the same moments shown on the previous slide...

J.K. Blitzstein, J. Hwang, *Introduction to Probability*, 1st ed., 2015, Chap. 6.4

Exercise 3: Moment Generating Function

... given that the MGF can indeed be expressed as a power series expansion:

$$\phi(t) = \sum_{n=0}^{\infty} \phi^{(n)}(0) \frac{t^n}{n!}$$

and

$$E\{X^n\} = \phi^{(n)}(0)$$

Homework 1: Rare disease

- A rare disease affects 1 person every 100'000. The SV researchers in EPFL are developing a new test method, which shows a sensitivity of 0.8 and a specificity of 0.9 in the 3rd phase trial. What is the probability that a patient is affected by this disease if the result is positive in the real world?
 - NB: the definition of sensitivity and specificity is given by the confusion matrix below

		Predicted Class		Sensitivity $\frac{TP}{(TP + FN)}$	Specificity $\frac{TN}{(TN + FP)}$	Accuracy $\frac{TP + TN}{(TP + TN + FP + FN)}$
		Positive	Negative			
Actual Class	Positive	True Positive (TP)	False Negative (FN) Type II Error			
	Negative	False Positive (FP) Type I Error	True Negative (TN)			
	Precision $\frac{TP}{(TP + FP)}$	Negative Predictive Value $\frac{TN}{(TN + FN)}$				

<https://manisha-sirsat.blogspot.com/2019/04/confusion-matrix.html>

Homework 2: Skew and Kurtosis

- Using the MGF, demonstrate that the **skew** of the **normal** distribution is zero.
- Then, calculate the **kurtosis** of the **exponential**.

Homework 3: (Matlab) distributions

- Reproduce with Matlab the different Random Variable distributions encountered in the Week 2 lecture.

Homework 4: Usefulness of Bayes' Theorem

- A company produces [single-photon cameras](#) with three production lines: the first one (line *A*) has 10% of defective devices, the second one (line *B*) 20% and the third one (line *C*) 30% (not a very reliable company...).
- Usually, these three production lines cover respectively 15%, 35% and 50% of the total production. We bought a device and we found it defective.
- What is it the probability that the defective device is from line *C*?