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Exercise 1: Group explanation 

1. Divide yourself in small group (2-3 ppl).
2. Discuss the following example taken from the lecture, focusing on understanding what is happening. 
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8.2.9 Example 1: Photon-flux dependent distributions

SwissSPAD2 
binary SPAD 
imager 

(intensity)

Low counts

High counts

A. Ulku et al., A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).

Q
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8.2.9 Example 2: Fluorescence Lifetime – Time-Resolved

Lifetime images: the pixel time-tags all 
photons and calculates t1 , t2 , A1

Cancerous 
GanglionFluorescence 

emission

TCSPC (Time-correlated Single-Photon Counting)

Pulsed Laser

Fluorescent Sample

O
b
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SPAD Imager

dichroic
mirror

emission
filter

Laser pulses

D. Li, Strathclyde Univ. (2016).
Gated camera
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8.2.9 Example 2: Fluorescence Lifetime – Time-Resolved

SwissSPAD2 
binary SPAD 
imager 

(overlapping gates)

A. Ulku et al., Large-Format Time-Gated SPAD Cameras for Real-Time Phasor-Based FLIM. EPFL Thèse 8311 (2021).
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8.2.9 Example 2: Fluorescence Lifetime – Time-Resolved

SwissSPAD2 
binary SPAD 
imager 

(overlapping gates 
-> convolution)

IRF: Instrument 
Response Function

A. Ulku et al., A 512x512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE JSTQE (2019).

f (t) = g(t) ∗ IRF(t)
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8.2.9 Example 3: Real Life Truths – LIDAR & Timing Jitter in SPADs

C. Niclass et al., A 128×128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array. IEEE JSSC 43 (2008).
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8.2.9 Example 3: Real Life Truths – LIDAR & Timing Jitter in SPADs

Direct SPAD illumination -> 
SPAD IRF (jitter noise) -> 

Non-Gaussian behavior of 
the SPADs timing 
uncertainty

A. R. Ximenes et al., A Modular, Direct Time-of-Flight Depth Sensor in 45/65-nm 3-D-Stacked CMOS Technology. IEEE JSSC 54 (2019).
C. Niclass et al., A 128×128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array. IEEE JSSC 43 (2008).
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8.2.9 Example 4: Real Life Truths – Scintillation Light

Positron Emission 
Tomography 
Basics

L. Braga et al., ISSCC, 2013

GE Discovery IQ, Nov 2016

G. Nemeth, Mediso, Delft WS 2010
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8.2.9 Example 4: Real Life Truths – Scintillation Light

R. Walker et al., IISW, 2013
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8.2.9 Example 4: Real Life Truths – Scintillation Light

Gundacker S, Auffray E, Pauwels K and Lecoq P Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a
general study of prompt photons to achieve 10 ps in TOF-PET. IOP Phys. Med. Biol. 61 2802–37

Fast vs. 
“slow” 
scintillation 
photons in a 
heavy 
scintillating 
crystal
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Exercise 2: Missed Photon Count

▪ A single photon detector (active area of 15x15 µm2, fill factor of 20%) is
illuminated with a continuous wave red laser (633 nm) with a uniform surface
power density of 2 µW/cm2.

▪ The detector has an average photon detection probability (PDP) at 633 nm of
35%.

▪ If the dead time of the detector (tD, time for the detector to recover operation
after clicking) is of 2 ns, what is the probability that photons are missed during
detector’s dead time?

15 µm

Photosensitive area

Single Photon Energy:

𝐸𝑝ℎ = ℎ𝜈 = ℎ
𝑐

𝜆
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Exercise 2: Missed Photon Count

▪ A single photon detector (active area of 15x15 µm2, fill factor of 20%) is
illuminated with a continuous wave red laser (633 nm) with a uniform surface
power density of 2 µW/cm2.

▪ The detector has an average photon detection probability (PDP) at 633 nm of
35%.

▪ If the dead time of the detector (tD, time for the detector to recover operation
after clicking) is of 2 ns, what is the probability that photons are missed during
detector’s dead time?

▪ First of all, we calculate the average number of photons striking the detector. In
order to do that, we need to know the energy of a single photon and the mean
optical power in the area of interest:

Single Photon Energy: 𝐸𝑝ℎ = ℎ𝜈 = ℎ
𝑐

𝜆
=

= 6.62607015 ∙ 10−34 𝐽 ∙ 𝑠 ×
299792458 𝑚 ∙ 𝑠−1

633 ∙ 10−9 𝑚
= 3.138145 ∙ 10−19𝐽

15 µm

Photosensitive area

Single Photon Energy:

𝐸𝑝ℎ = ℎ𝜈 = ℎ
𝑐

𝜆
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Exercise 2: Missed Photon Count

Average Optical Power on Active Area: 𝜋 = P𝑇 𝐹𝐹 𝐴𝑎𝑐𝑡𝑖𝑣𝑒 =

= 2 ∙ 10−6 ∙ 104
𝑊

𝑚2 × 0.2 × 225 ∙ 10−12 𝑚2= 0.9 ∙ 10−12 𝑊

▪ Now we can calculate the average number of photons seen by the detector:

Average Photon Number on Active Area: 𝜇𝑝ℎ =
𝜋

𝐸𝑝ℎ
𝑃𝐷𝑃 =

=
0.9 ∙ 10−12𝑊

3.14 ∙ 10−19𝐽
× 0.35 = 1.003 ∙ 106 cps

▪ Since we have the mean values of a time dependent random variable (time
before a photon is detected by the sensor) our distribution will be an
Exponential distribution. The probability for a photon to be detected is given by

𝑋~Expo 𝜇𝑝ℎ .

15 µm

Photosensitive area

Single Photon Energy:

𝐸𝑝ℎ = ℎ𝜈 = ℎ
𝑐

𝜆
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Exercise 2: Missed Photon Count

▪ Assuming that the first photon is absorbed at a certain time 𝑡𝑋, it follows that 
the probability that a photon is absorbed before 𝑡𝑋 + 𝑡𝐷 is:

𝑃 𝑋 ≤ 𝑡𝐷 = 1 − 𝑒− 𝜇𝑝ℎ𝑡𝐷

▪ However, we could have used another approach, and exploit the properties of

the Poisson distribution 𝑌~Pois 𝜆𝑝ℎ . In fact, since the average number of

photons in the time 𝑡𝐷 is given by 𝜇𝑝ℎ𝑡𝐷 = 𝜆𝑝ℎ, the probability to detect at least

one photon would be:

𝑃 𝑌 > 0 = 1 − 𝑃 𝑌 ≤ 0 = 1 −෍

𝑦=0

0
𝜆𝑝ℎ

𝑦

𝑦!
𝑒− 𝜆𝑝ℎ = 1 − 𝑒− 𝜆𝑝ℎ 15 µm

Photosensitive area

Single Photon Energy:

𝐸𝑝ℎ = ℎ𝜈 = ℎ
𝑐

𝜆
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Exercise 3: Moment Generating Function

▪ Obtain the moment generating function of the normal distribution 
𝑋~𝒩 𝜇, 𝜎2 . Calculate the first three moments.
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Exercise 3: Moment Generating Function

▪ Obtain the moment generating function of the normal distribution 
𝑋~𝒩 𝜇, 𝜎2 . Calculate the first three moments.

▪ First of all, let’s find the moment generating function of the standard 
normal, i.e. for 𝑍~𝒩 0,1 . It follows:

𝐸 𝑒𝑡𝑍 =
1

2𝜋
න
−∞

∞

𝑒𝑡𝑧𝑒−𝑧
2/2 𝑑𝑧

=
1

2𝜋
න
−∞

∞

𝑒−(𝑧
2−2𝑡𝑧)/2 𝑑𝑧

= 𝑒𝑡
2/2

1

2𝜋
න
−∞

∞

𝑒− 𝑧−𝑡 2/2 𝑑𝑧

= 𝑒𝑡
2/2
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▪ For the normal distribution, it follows that 𝑋~𝒩 𝜇, 𝜎2 = 𝜎𝑍 + 𝜇. 
Therefore:

𝜙 𝑡 = 𝐸 𝑒𝑡𝑋 = 𝐸 𝑒𝑡 𝜎𝑍+𝜇 =

= 𝑒𝑡𝜇𝐸 𝑒𝑡𝜎𝑍 = exp
𝜎2𝑡2

2
+ 𝜇𝑡

▪ By differentiating we get:

𝜙′ 𝑡 = 𝜇 + 𝑡𝜎2 exp
𝜎2𝑡2

2
+ 𝜇𝑡

𝜙′′(𝑡) = 𝜇 + 𝑡𝜎2 2 exp
𝜎2𝑡2

2
+ 𝜇𝑡 + 𝜎2 exp

𝜎2𝑡2

2
+ 𝜇𝑡

Exercise 3: Moment Generating Function
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𝜙′′′ 𝑡 = 𝜇 + 𝑡𝜎2 3 exp
𝜎2𝑡2

2
+ 𝜇𝑡 + 2𝜎2 𝜇 + 𝑡𝜎2 exp

𝜎2𝑡2

2
+ 𝜇𝑡 +

+𝜎2 𝜇 + 𝑡𝜎2 exp
𝜎2𝑡2

2
+ 𝜇𝑡

▪ Hence it follows:

𝜙′(0) = 𝜇 = 𝐸 𝑋

𝜙′′ 0 = 𝜇2 + 𝜎2 = 𝐸 𝑋2

𝜙′′′ 0 = 𝜇3 + 3 𝜇 𝜎2 = 𝐸 𝑋3

Exercise 3: Moment Generating Function
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▪ METHOD 2: Alternatively, we can simplify the computation by means of a 
Taylor-McLaurin power series expansion of the exponentials:

𝜙 𝑡 = exp
𝜎2𝑡2

2
+ 𝜇𝑡 = exp

𝜎2𝑡2

2
exp 𝜇𝑡 =

= 1 +
𝜎2𝑡2

2
+𝑂 𝑡4 1 + 𝜇𝑡 +

𝜇2𝑡2

2
+
𝜇3𝑡3

6
+ 𝑂 𝑡4

= 1 + 𝜇𝑡 +
𝜇2 + 𝜎2

2
𝑡2 +

𝜇3

6
+
𝜇𝜎2

2
𝑡3 + 𝑂 𝑡4

= 1 + 𝜇𝑡 + (𝜇2 + 𝜎2)
𝑡2

2
+ 𝜇3 + 3𝜇𝜎2

𝑡3

6
+𝑂 𝑡4

which leads in an elegant and simplified way to the same moments shown on 
the previous slide…

Exercise 3: Moment Generating Function

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 6.4
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… given that the MGF can indeed be expressed as a power series expansion:

𝜙 𝑡 = ෍

𝑛=0

∞

𝜙(𝑛)(0)
𝑡𝑛

𝑛!

and

𝐸 𝑋𝑛 = 𝜙 𝑛 0

Exercise 3: Moment Generating Function

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 6.4
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Homework 1: Rare disease

▪ A rare disease affects 1 person every 100’000. The SV researchers in EPFL are developing a new 
test method, which shows a sensitivity of 0.8 and a specificity of 0.9 in the 3rd phase trial. What is 
the probability that a patient is affected by this disease if the result is positive in the real world?

▪ NB: the definition of sensitivity and specificity is given by the confusion matrix below

https://manisha-sirsat.blogspot.com/2019/04/confusion-matrix.html

https://manisha-sirsat.blogspot.com/2019/04/confusion-matrix.html
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Homework 2: Skew and Kurtosis

▪ Using the MGF, demonstrate that the skew of the normal distribution is 
zero.

▪ Then, calculate the kurtosis of the exponential.
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Homework 3: (Matlab) distributions

▪ Reproduce with Matlab the different Random Variable distributions 
encountered in the Week 2 lecture.
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Homework 4: Usefulness of Bayes’ Theorem

▪ A company produces single-photon cameras with three production lines: 
the first one (line 𝐴) has 10% of defective devices, the second one (line 
𝐵) 20% and the third one (line 𝐶) 30% (not a very reliable company…). 

▪ Usually, these three production lines cover respectively 15%, 35% and 
50% of the total production. We bought a device and we found it 
defective.

▪ What is it the probability that the defective device is from line 𝐶?
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